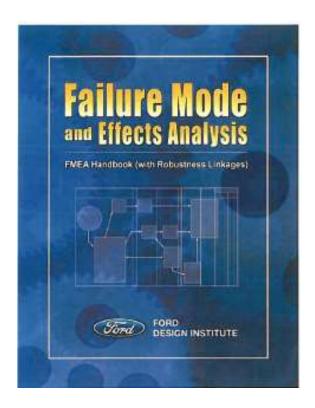
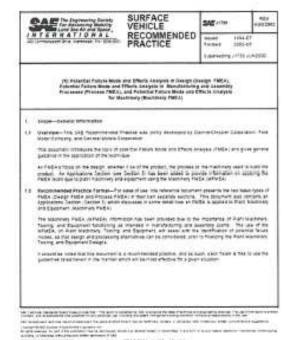
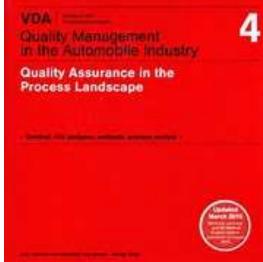
Core Tools: The Alphabet Soup of APQP, PPAP, FMEA, SPC and MSA

Jd Marhevko – Accuride Corporation, SVP QLMS Shainin Medalist, ASQ Fellow, CSSBB, CMQ/OE, CQE, STEP Awardee ASQ World Conference – Session T12 – May 1, 2018

The FIVE Core Tools


- APORP


 APORP


 Benefit dated

 Finance from Aport Aport
- 1. APQP: Advance Product Quality Planning: Guidelines for a product quality plan to develop a product or service that satisfies the customer
- 2. FMEA: Failure Modes and Effect Analysis: Methodology used to ensure potential problems have been considered and addressed throughout the product and process development process (Ex. APQP). Traditionally includes the Control Plan (CP)
- 3. PPAP: Production Part Approval Process: Ensures product consistently meets customer engineering specification requirements during production run at the quoted production rate
- 4. MSA: Measurement Systems Analysis: Guidelines for assessing the quality of a measurement system where readings are replicated
- 5. SPC: Statistical Process Control: Basic graphing statistical tools that enable process control and capability for continual improvement

Other Sample Manuals

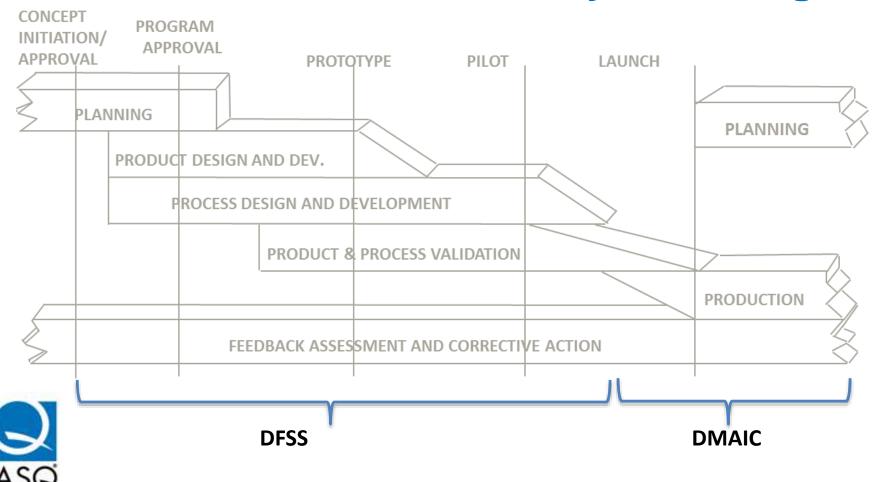
Core Tool inferences in ISO/IATF 16949:2016

Core Tool	ISO 9001:2015 (Core Tools NOT Specified)	IATF 16949:2016 (Core Tool Inferred/Referenced)
APQP	8.1 Operational Planning and Control 8.2 Requirements for Products and Services 8.3 Design and Development of Products and Services 8.4 Control of Externally Provided Processes, Products and Services	8.1.1 Operational Planning and Control 8.2 Requirements for Products and Services 8.3 Design and Development of Products and Services 8.4 Control of Externally Provided Processes, Products and Services
FMEA	6.1 Actions to Address Risks and Opportunities 8.3.5 Design and Development Output 9.1. Monitoring, Measurement, Analysis and Evaluation General	 4.4.1.2 Product Safety 6.1 Actions to Address Risks and Opportunities 8.3 Design and Develop of Products and Services [8.3.3.3, 8.3.5.1, 8.3.5.2] 8.5 Production and Service Provision [8.5.1.1, 8.5.6.1.1] 8.7 Control of Non-Conforming Outputs [8.7.1.4, 8.7.1.5] 9.1 Monitoring, Measurement, Analysis and Evaluation General
ASQ		9.2.3 Manufacturing Process Audit10.2 Non-Conformity and Corrective Action [10.2.3, 10.2.4]10.3.1 Continual Improvement

Core Tool inferences in ISO/IATF 16949:2016

Core Tool	ISO 9001:2015 (Core Tools NOT Specified)	IATF 16949:2016 (Core Tool Inferred/Referenced)
CP*	 8.3.5 Design and Development Outputs 8.5.1 Control of Production and Service Provision 8.6 Release of Products and Services 8.7 Control of Non-Conforming Outputs 	8.3.5.2 Manufacturing Process Design Output 8.5 Production and Service Provision [8.5.1.1, 8.5.1.3, 8.5.6.1.1] 8.6 Release of Products and Services 8.7 Control of Non-Conforming Outputs 9.1.1.2 Identification of Statistical Tools 9.2.2.3 Manufacturing Process Audit 10.2.3 Problem Solving Annex A. Control Plan
PPAP	8.3.4 Design and Development Control	8.3.4.3 Prototype Program 8.3.4.4 Product Approval Process

^{*}The Control Plan is not considered a "stand alone" Core Tool. Usually paired with the P-FMEA

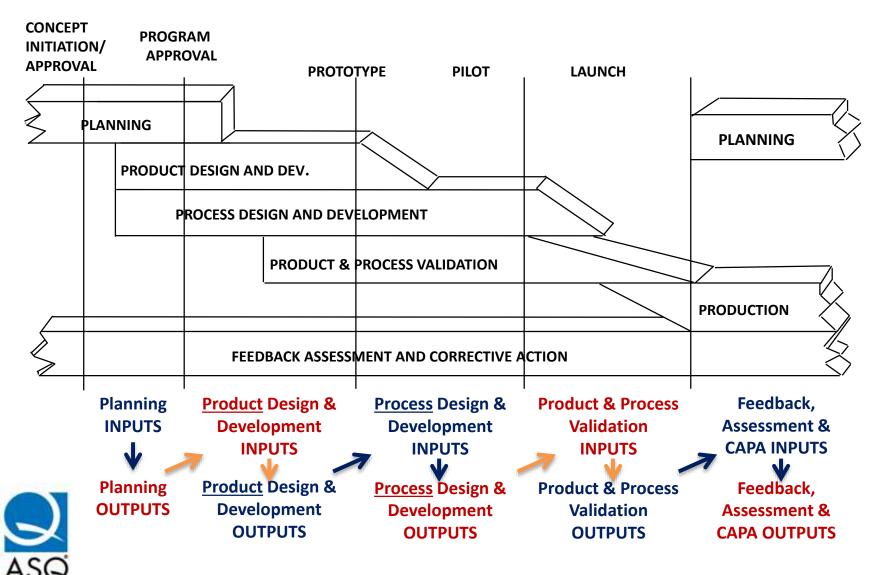

Core Tool *inferences* in ISO/IATF 16949:2016

Core Tool	ISO 9001:2015 (Core Tools NOT Specified)	IATF 16949:2016 (Core Tool Inferred/Referenced)
SPC	9.1 Monitoring, Measurement, Analysis and Evaluation	8.3.5.2 Manufacturing Process Design Output 8.6.4 Verification & Acceptance of Conformity 9.1 Monitoring, Measurement, Analysis and Evaluation
MSA	7.1.5 Monitoring and Measurement Resources	7.1.5 Monitoring and Measuring Resources 7.1.5.1.1 MSA 7.1.5.2.1 Calibration/Verification Records 7.1.5.3 Laboratory Requirements 8.6.3 Appearance Items (inference)

1

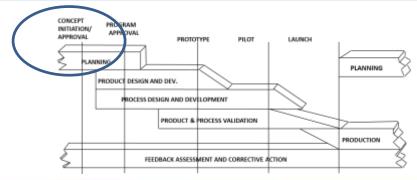
APQP Advanced Product Quality Planning

APQP


What is it: The management of Product Development

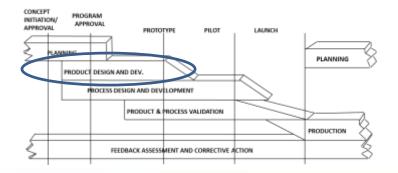
Why do we need it: To understand what our customer wants and to fulfill those wants

How is it done: Across a prescriptive "Five-Stage", "Gated" or "Phased" approach. Other iterations exist and are also used so long as the foundational five are in place. The process is required to be cross-functional in its development and execution


The Typical APQP Stages/Phases

APQP Plan & Define Phase

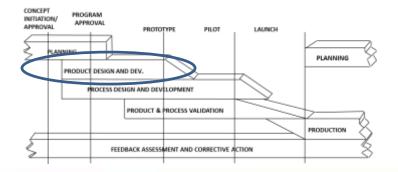
Typical Inputs	Typical Outputs
VOC Data	Design goals
Marketing Strategy	Reliability/Quality Goals
Product/Process	Preliminary Critical
Assumptions	Characteristics
Customer Inputs	Preliminary Process Flow
Compliance Criteria	Preliminary BOM
Etc.	Etc.



APQP Product Design & Development Phase

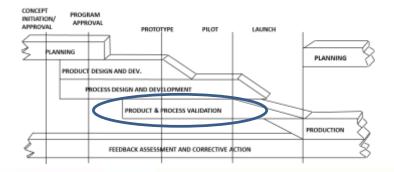
Program Approval

Design Outputs	APQP Outputs
DFMEA	New Equipment/Tooling
Design for Mfg/Asm	New Facility Needs
Design Verification	Gage/Test Requirements
Prototype Built	Final Critical Characteristics
Eng Drawings/Specs	Etc.
Etc.	



APQP Product Design & Development Phase

Prototype Outputs											
Pkg Standards/Specs	MSA/AAA										
Product/Process Review	Management Support										
Process Flow Chart	Cp/Cpk Plan										
Floor Plan	Work Instructions										
PFMEA/DCP	Etc.										



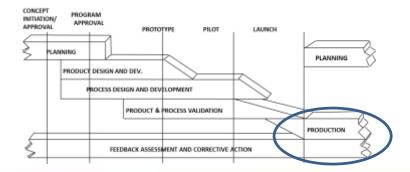
APQP Product & Process Validation Phase

Pilot. Sam	Pilot. Sample Outputs												
Significant Production Run	Packaging/Preservation												
MSA/AAA	Production Control												
Cp/Cpk Studies	Quality Sign-Offs												
PPAP Completion	Management Support												
Product Validation Testing	Etc.												

APQP Feedback, Assessment & CAPA Phase

Launch Outputs

Reduced Variation


Improved Customer Satisfaction

Improved Delivery/Service

Lessons Learned

Standard Work Updates

Etc.

2a

Design FMEA Design Failure Mode Effects Analysis

Subsystem/ Module &	Potential Failure Mode	Potential Local Effect(s) of Faiture	Potential End Effect(s) of Failure	SEV		000	Current Controls/Fault Detection		RPN	Recommended Action(s)	Areal/ Individual Responsible & Completion Date(s)		SE	000	£	p
Function 16-inch Color Montae	Loss of video	Unable to display operator's input	Loss of fext and graphical data representation	6	CRT component failure		Detection Lags of video	1		Recommend the 14-nch monitor be	Mr. X (electrical) and Mr. Y (software) will	Actions Taken Not accepted by the Reliability Review Team See report ABC-XX1.	6	200		1.
				6:	Graphics PCB failure	3	System alert	3	54	Recommend a 16- inch monder be replaced for the existing 14-inch monder; so that complete redundancy will exist.		Not accepted by the Reliability Review Team. See report ABC-XX2.		3	3	5

ALL Products & Processes Fail

Failure is **ALWAYS** a Design Requirement/Criteria

Determining HOW the design will fail, WHEN it will fail, and WHY it will fail will allow a designer to incorporate failure as an acceptable design constraint

Failure as an ACCEPTABLE design constraint = Customer Satisfaction = Design Quality

FMEA: Design (D) & Process (P)

What is it: A risk analysis of a part or process

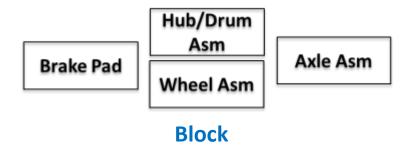
Why do we need it: To identify the functions of a process and the associated potential failure modes, effects and potential causes. The vision is to prevent problems from occurring so that defects are not incurred and no one gets hurt. It is used to evaluate if the current planned actions are sufficient and effective

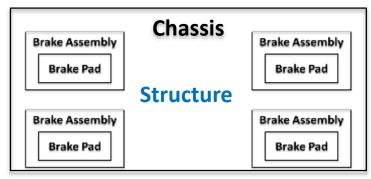
How is it done: Via the utilization of a cross-functional team approach. Multiple iterations exist across industry. Within IATF, the process is required to be cross-functional in its development and execution. It is considered a "Risk-Based Thinking" (RBT) tool. It often incorporates results from other methods such as SPC, MSA, Fault Tree Analysis, etc.

FMEAS for Products & Processes

There are three (3) basic cases in which an FMEA is applied:

- 1. New designs, new technology or new process
- 2. New application of existing design or process
- 3. Changes to an existing design or process
- Design FMEA: A technique which analyzes system functions within a defined boundary to address possible design weakness and potential risks of failure. DFMEA data is used in the creation of the PFMEA
- Process FMEA: A technique which analyzes processes that can impact quality. These processes may be: Receiving, Handling, Manufacturing, Assembly, Storage,
 Transportation, Maintenance, Repair and Communication


Six (6) Steps of an FMEA (D or P)


Define System Function Failure Risk Optimiza -tion

- 1. Define Scope. Identify what is to included in the evaluation. (System, Sub-system, Component). Include relevant Lessons Learned (LL) and reference materials. Manage the five (5) T's:
 - 1. Team: Who will constitute the core team
 - 2. Timing: When is it due. Gantt, lay-out timing plan
 - 3.inTent: Why is the team there; Ensure skills/training
 - **4. Tool:** What reporting methodology will be used? Excel, Software, etc
 - 5. Task: What work needs to be done across the six steps. Consider inclusion of effective documentation for auditing and customer review

- 2. Conduct System Analysis: Define the customer(s) wrt End Users, Assembly, Manufacturing, etc.
 - 1. Identify and break down the design into system, sub-system, component and parts for functional risk analysis. Note: A component FMEA is a subset of a system FMEA. Ex. A brake pad is a component of a brake assembly which is a sub-system of the chassis
 - Visualize the system via block (boundary) and/or structure tree diagrams

- 3. Conduct Function Analysis: Insures that the specified and required functions are appropriately allocated to the system elements. A function describes WHAT the item/system element is intended to do.
 - 1. Associates functions with the pertinent system elements
 - 2. Overviews the functionality of the product
 - 3. May describe functions in detail. May need to consider interfaces and clearances wrt physical connections, material exchange, energy transfer and data exchange
 - 4. Allocates requirements/characteristics to individual functions

Cascades internal/external customer functions with associated requirements for intended use

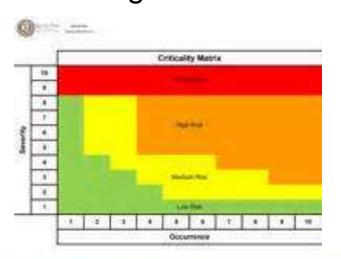
4. Conduct Failure Analysis: Identify failure causes, modes, and effects, and show their relationships to enable risk assessment.

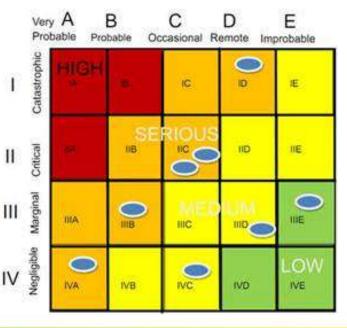
Failure effects are the consequence of a failure mode

- 1. Identification of potential failures assigned to functions in structural elements
- 2. Visualize failure relationships (FMEA spreadsheet)
- 3. Collaborate between the customer and suppler on effects

Consider "Failure Chain" approach. AKA the Golden Circle

- 5. Conduct Risk Analysis. Prioritize the risks by evaluating Severity (how bad), Occurrence (how often) and Detection (how well can we find it). Aka SOD. Each is on a scale of 1-10. The multiplication of S x O x D is the RPN
 - 1. A Risk Priority Number (RPN) is determined
 - 2. Based on the RPN, assign preventive controls which provide information/guidance as an input to the design
 - 3. Assign detective controls to verify and validate procedures previously demonstrated to detect the failure
 - 4. Completed SOD assessment
 - Collaboration between customer and supplier on Severity


RPN, Criticality or Prioritization


Each method of evaluation has pros and cons. There is a change in process towards an "Action Prioritization" (AP) matrix which may incorporate Criticality (S*O). RPN will be eliminated as a method of risk evaluation (AIAG, 2018)

AIAG currently references the SOD tables found in the FMEA "Blue Book". Many organizations have evolved to

their own form of prioritization tables

based on their own logic

4th Ed SOD Summary for Design FMEA

NOTE: OEs & Other businesses often use their own SOD tables. This is a MODEL

#	Severity Criteria	Occurrence Criteria	Opportunity for Detection
10	Failure to meet safety and/or regulatory requirements. Potential failure mode affects safe vehicle operation and/or involves non-compliance with government regulation without warning	Very high. New technology/new design with no history. >= 1 per 10	No detection opportunity: No current design control. Cannot detect or is not analyzed. Detection is almost impossible
9	Failure to meet safety and/or regulatory requirements. Potential failure mode affects safe vehicle operation and/or involves non-compliance with government regulation with warning	High. Failure is inevitable with new design, new application or change in duty cycle/operating conditions. 1 in 20	Not likely to detect at any stage. Design analysis/detection controls have a weak detection capability. Virtual analysis is not correlated to expected actual operating conditions. Detection is very remote
8	Loss or degradation of primary function. Loss of primary function	High. Failure is likely with new design, new application or change in duty cycle/operating conditions. 1 in 50	Post design freeze and prior to launch. Product verification/validation after design freeze and prior to launch with pass/fail testing. Detection is remote
7	Loss or degradation of primary function. Degradation of primary function	High. Failure is uncertain with new design, new application or change in duty cycle/operating conditions. 1 in 100	Post design freeze and prior to launch. Product verification/validation after design freeze and prior to launch with test to failure testing. Detection is very low
6	Loss or degradation of secondary function. Loss of secondary function	Moderate. Frequent failures associated with similar designs or in design simulation and testing. 1 in 500	Post design freeze and prior to launch. Product verification/validation after design freeze and prior to launch with degradation testing. Detection is low
5	Loss or degradation of secondary function. Degradation of secondary function	Moderate. Occasional failures associated with similar designs or in design simulation and testing. 1 in 2,000	Prior to design freeze. Product verification/validation after design freeze and prior to launch with pass/fail testing. Detection is moderate
4	Annoyance. Appearance or audible noise, vehicle operable, item does not conform and noticed by most customers (>75%)	Moderate. Isolated failures associated with similar designs or in design simulation and testing. 1 in 10,000	Prior to design freeze. Product verification/validation after design freeze and prior to launch with test to failure testing. Detection is moderately high
3	Annoyance. Appearance or audible noise, vehicle operable, item does not conform and noticed by many customers (>50%)	Low. Only isolated failures associated with almost identical design or in design simulation testing. 1 in 100,000	Prior to design freeze. Product verification/validation after design freeze and prior to launch with degradation testing. Detection is high
2	Annoyance. Appearance or audible noise, vehicle operable, item does not conform and noticed by discriminating customers (<25%)	Low. No observed failures associated with almost identical design or in design simulation testing. 1 in 100,000,000	Virtual analysis correlated. Design analysis/detection controls have a strong detection capability. Virtual analysis is highly correlated with actual or expected operating conditions prior to design freeze. Detection is very high
1	No discernable affect	Very low. Failure is eliminated through preventive control	Detection not applicable; failure prevention. Failure cause or failure mode can not occur because it is fully prevented through design solutions. Detection is almost certain

PFMEA 4th Edition. 2008. Chrysler LLC, Ford Motor Company, General Motors Corporation

- 6. Evaluate for Optimization. The planning and execution of actions to mitigate risk and assess the effectiveness of those actions
 - 1. Identify necessary actions
 - 2. Assign responsibilities and timing
 - 3. Confirmation of effectiveness of the actions taken
 - 4. Continuous improvement of the design

Multiple other types of FMEA applications: System, Concept, Environmental/Safety, Machinery, Software, etc.

DFMEA Sample Format

Marker dried out

DFMEA formats vary widely based on OE criteria and independent company expectations...Even though the AIAG will add ~8-10 more columns to the current standard, the general approach and intent will be the same; mitigate risk through failure analysis

			T	,				ı											
2. 8	SYSTEM ANAL	YSIS	3. FUNCTION ANALYSIS	4. FAI	LURE	ANAL	YSIS		5. RIS	K ANALYSIS				6. OP	TIMIZATION				
Item	Function	Requirement	Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Class	Potential Causes of Failure	Controls (Prevention)	Occurrence (O)	Controls (Detection)	Detection (D)	RPN	Recommended Action	Responsibility & Target Date	Actions Taken Completion Date	Severity (S)	Ooccurrence (O)	Detection (D)	RPN
Madag	Maia	1,000 ft of	Con Falls Off		out 4	N/A	Barrel ID too small	Spector interference fit	4	Instron pull test ABC	2	32	None at this time						
Marker	Write	continuous drawing	Cap Falls Off	Marker dries out		N/A	Cap ID too large	Spec for interference fit	4	Instron pull test ABC	2	0	None at this time						ĺ
			`			N/A	Felt insert too long	Use felt material with low CTE	2	TE lab test	3	0	None at this time						
			_	HAT lure	ĭ		HOW Failure	7	1	WH Failu			``						

Cap Fell Off

Barrel ID too Small

Other DFMEA Sources...

- http://quality-one.com/fmea/design-fmea/
- http://www.isixsigma.com/dictionary/dfmea/
- http://www.qmii.com/LT-133%20ISO%209001_2015%20Risk%20Based%20Thinking.pdf
- http://www.iso.org/iso/home/standards/iso31000.htm (ISO Risk Management)
- 86 Minute Video...very detailed <u>http://www.isixsigma.com/tools-templates/design-of-experiments-doe/mark-kiemele-interview/</u>
- AIAG APQP for DFMEA Checklist (2nd ed)

2b

Process FMEA & CP PFMEA + Control Plan = Dynamic Control

Subsystem: \	mated Wafer D rideo Display wing: XYZ-12:				27		90					Date: 5 S Prepared b	hè	et:	K of	XX
Subsystem/ Module & Function	Potential Failure Mode	Potential Local Effect(s) of Faiture	Potential End Effect(s) of Failure	SEV		000	Current Controls/Fault Detection		RPN	Recommended Action(s)	Areal/Individual Responsible & Completion Date(s)		£	000	£	P
16-inch Color Montor	Loss of video	Unable to display operator's imput	Less of text and graphical data representation	6	CRT component failure	2	Less of video		12	Recommend the 14-nch monitor be used as a backup to provide operator interface. However, graphical data representation will become degraded due to the loss of high resolution.	(software) will	Not accepted by the Reliability Review Team: See report ABC-XX1.		2	1	12
				63	Graphics PCB tailute	3	System alert	3	54	Recommend a 15- inch monder be replaced for the existing 14-inch monder; so that complete redundancy will exist.	Mr. X (electrical) and Mr. Y (software) will evaluate proposed configuration by MM/DD/YY.	Not accepted by the Reliability Review Team. See report ABC-XX2.		3	3	54
					Power supply failure											

What is a DCP

A DCP is a blended format of a PFMEA and CP. It leverages the common columns in both tools and enables "linear" thinking across the analysis of an individual process step

It saves time and increases the security of the system

- A PFMEA defines, identifies, prioritizes, and eliminates known and/or potential process failures from reaching the customer. The goal is to eliminate Failure Modes and reduce their risks
- A CP follows the PFMEA steps and provides details on how the "potential issues" are checked for in the process
- A DCP is a living document which helps to prevent problems
- It saves time and increases process security

A DCP

A DCP lists a sequence of tasks used to produce a product or provide a service by combining the PFMEA and CP. It:

- 1. Identifies process related Failure Modes before they occur
- 2. Determines the Effect & Severity of these failure modes
- 3. Identifies the Causes and probability of Occurrence of the failure modes
- 4. Identifies the Controls and their Effectiveness
- 5. Quantifies the Risks associated with the failure modes
- 6. Develops and documents **Action Plans** to reduce the risks
- 7. Identifies the Type & Effectiveness of the Gaging system
- 8. Determines the necessary Inspection Frequency

FMEA & CP in One Format

Plant				Part/Product Name				Customer	PN			Custome	r PN/Revision/Date	
Site /	Address			XXX				XXX			XXX		01/01/00	
	Address			Process				PN:		Flow Chart #		PN/Revis	ion/Date	
Site /	Address			xxx				XXX		XXX		XXX		01/01/00
				Prototype (X)	Pre-Launch (X)	Production	n (X)							
	Product/Proces	s Characteristics		Potential	Failures and Effects		Causes of Fail	ure	Curr	ent Controls				
	Char. or Process		SC	Failure	Effects of				Control - Detect	Control Method to				Responsible
No.	Desc	Characteristic	Class	Mode	Failure	SEV	Cause	occ	Failure Mode	Prevent Cause	DET	RPN	Recommendations	Person/Timing
												0		1
												0		1
												0		
												0		
												0		
												0		
												0		
												0		
												0		
												0		
												0		
			<u> </u>									0		<u> </u>
												0		<u> </u>
										1	1	0		
						_				1	1	0		
						_				1	1	0		
						-				+	1	0		
Α	В	С	D	E	F	G	Н			К	L	M	N	0

The format is completed linearly from A – AA. This ensures inclusion of a gaging system review and eliminates the need to manage 2 forms

**Many sites modify the format to fit their own needs

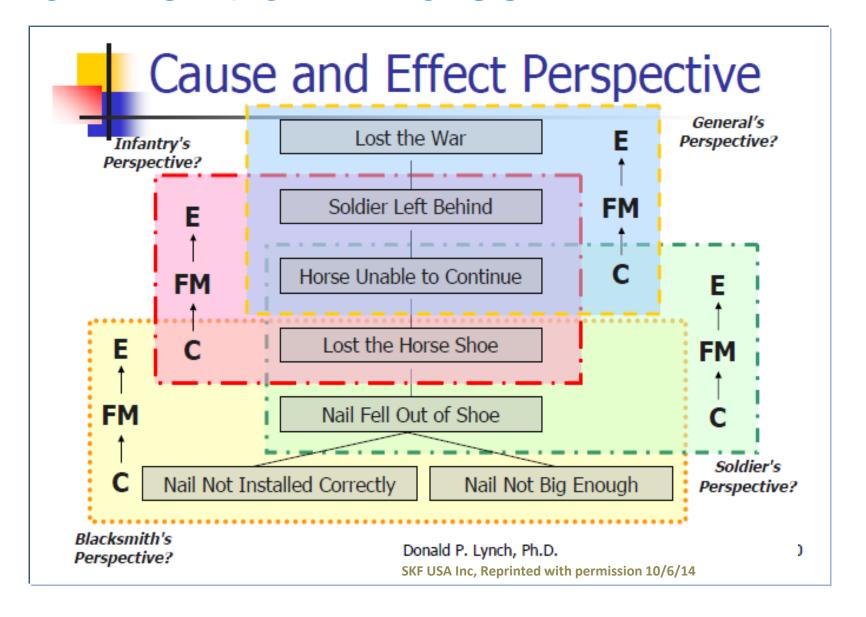
CP "Side" P - AA

Dynamic Control Plan (DCP) Revision/Date				Core Team:							
"C"	01/01/00			XXX Design Eng						XXX Other	
"B"	01/01/00					XXX	Mfg Eng			XXX	Other
"A"	01/01/00			XXX Prod Mgr						XXX Other	
(Rolling top 3 levels)				DCP File Number: XXX							
Orig	New	New	New	Ctrl		Tool	Gage Desc/	GRR &	Insp	Cpk &	Reaction
SEV	OCC	DET	RPN	Fctr	OWI#	Fxt #	Gage No.	Date	Freq	Date	Plans
0			0	**	**	**		**		**	
0			0						, and the second second		
0			0								
0			0						, and the second second		
0			0								
0			0						, and the second second		
0			0								
0			0								
P	Q	R	S	Т	U	٧	W	Х	Υ	Z	AA

A Practice DCP

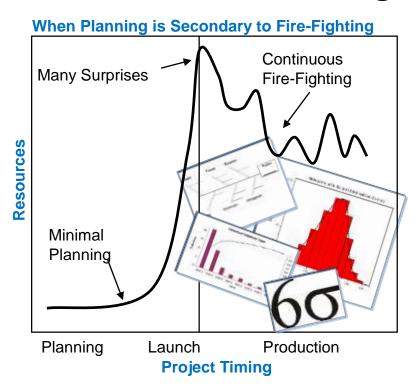
The fit of a marker cap...

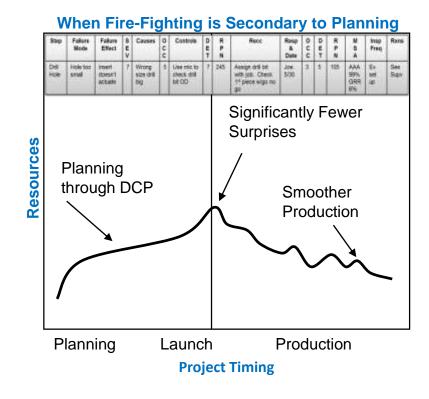
- 1. Look at the cap and barrel of a writing marker
- 2. Review the step of assembling the cap onto the barrel
- 3. Complete relevant lines of the DCP wrt assembly
- 4. There can be two general failure modes:
 - a. The cap fits with an audible "click" and stays firmly in place. It does NOT easily pull off
 - b. The cap does not stay secure and falls off
- 5. Each failure mode will have its own "DCP Stream" of information
- 6. Follow across the format and complete the information
- 7. Work in teams across the format


4th Ed SOD Summary for Process FMEA

NOTE: OEs & Other businesses often use their own SOD tables. This is a MODEL

#	Severity Criteria (Customer Effect)	Occurrence	Opportunity for Detection
10	Failure to meet safety and/or regulatory requirements. Potential failure mode affects safe vehicle operation and/or involves noncompliance with government regulation without warning	Very high. >= 1 per 10	No detection opportunity: No current process control. Cannot detect or is not analyzed. Detection is almost impossible
9	Failure to meet safety and/or regulatory requirements. Potential failure mode affects safe vehicle operation and/or involves noncompliance with government regulation with warning	High. 1 in 20	Not likely to detect at any stage. Failure mode and/or Cause is not easily detected. Detection is very remote
8	Loss or degradation of primary function. Does not affect safe vehicle operation	High. 1 in 50	Problem detection post processing. Failure mode detection post processing by operator through visual, tactile, or audible means. Detection is remote
7	Loss or degradation of primary function. Degradation of primary function. Vehicle operable at reduced level of performance	High. 1 in 100	Problem detection at source. Failure mode detection in-station by operator through visual, tactile, or audible means or post-processing through attribute gaging. Detection is very low
6	Loss or degradation of secondary function. Vehicle operable but convenience/comfort functions inoperable	Moderate. 1 in 500	Problem detection post processing. Failure mode detection post-processing by operator through use of variable gaging or in-station by operator through use of attribute gaging. Detection is low
5	Loss or degradation of secondary function. Vehicle operable but convenience/comfort functions at reduced levels of performance	Moderate. 1 in 2,000	Problem detection at source. Failure mode or error detection in-station by operator through use of variable gaging or by automated controls in–station that will detect issue and notify operator. Gaging performed on setup and 1 st pc check. Detection is moderate
4	Annoyance. Appearance or audible noise, vehicle operable, item does not conform and noticed by most customers (>75%)	Moderate. 1 in 10,000	Problem detected post processing. Failure mode detection post-processing by automated controls that will detect discrepant part and lock part to prevent further processing. Detection is moderately high
3	Annoyance. Appearance or audible noise, vehicle operable, item does not conform and noticed by many customers (>50%)	Low. 1 in 100,000	Problem detection at source. Failure mode detection in-station by automated controls that will detect discrepant part and automatically lock part in station to prevent further processing. Detection is high
2	Annoyance. Appearance or audible noise, vehicle operable, item does not conform and noticed by discriminating customers (<25%)	Low. 1 in 100,000,000	Error detection and/or problem prevention. Error cause detection in station by automated controls that will detect error and prevent discrepant part from being made. Detection is very high
1	No discernable affect	Very low. Failure is eliminated through preventive control	Detection not applicable; error prevention. Error cause prevention as a result of fixture/machine/part design. Discrepant parts cannot be made due to error proofing. Detection is almost certain


PFMEA 4th Edition. 2008. Chrysler LLC, Ford Motor Company, General Motors Corporation

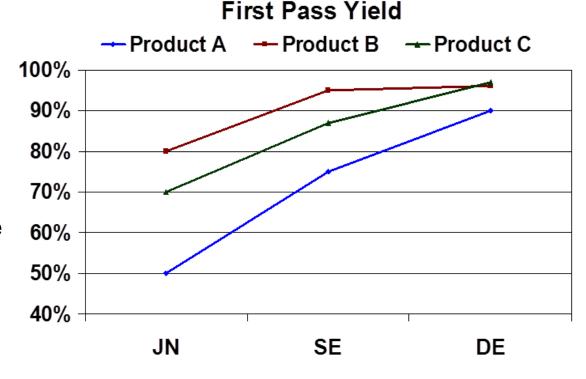

For Want of A Horse

DCP or Fire-Fight?

Planning vs Fire-Fighting

Total time is *area under the curve*...Estimated monies are 7:1 with OT, Freight, Material/Equipment changes, T&E, etc. Leverage the DCP to minimize fire-fighting after release. Partner with functional teams

Case Study: Before/After DCP


Initial release and after DCP implementation of 3 products. Was planning secondary to firefighting? What kinds of losses were likely incurred? Was it worth it?

> June: Before DCP

> Sept: After DCP

> December:

Current Performance

PPAP

Production Part Approval Process

Par Nerd	Put Furtion
THEN MADE	
Covering Registers The The Engineering Drawn	g Charge Live Daniel
Additional Engineering Changes	Dated
Shape on Davaling He	Catar No. World (kg)
Charles did No Engineering One	spe Level Deard
SUPPLEX MANUFACTURES DETORNATION	SERVICE OF STREET
Saprier Name & Name Code	☐ Seminaria ☐ State of Purplement ☐ Approximate
	Costoner NameEN/sien
frui intran	
	toyettiye cott
Ov 900 N	Application
ON 1961 DE	
Note: Desertes part contact and restrator or reportable outside out.	□ 740 □ 700
An amily participating with againg the first having spine	□ 74 □ 19k
	D
PRIADOR FOR EURANESION	
intul cubrécies	Change to Solveral Contraction or Wigners
Enghoring thumpoid Tooling Tourchir, Replacement, Residonment, or additional	Sich-Supplier or Material Source Change Change in Part Prenesping
Serveius et literapera	Para Posturori je lidoteval i jeranice
Truly Inselie a fine Types	Other - please specify
PERSONAL TURNSTONN LUTUR TOWN AND	
☐ javel 1 – Microst only (and for designated appearance forms, or App	concern Asserted Superior codes that he codes con-
Level 3 - Nicosei sell-product samples, and imitroly appering data so	
David S - Market will product serging and complete supporting this	
Local 4 - Remain sections requirement so obtaining contents.	
 Lovel S — Numert with product samples and complete supporting duty 	contened at apprier's munufacturing beatlern-
SWEWSHOW RESILETS	
The creatile for	et in the Community of the Community
Tomo made more al diserry and spreifunitor requirements:	90 PMC - Determine Property
Mobil/Castly Production Process	_
DECLARATION	
having after that he complex represented by the regrent are represented	
Production Part Approve Process Manual Birl (Ettian Parateriaums, 1 turti produced at the production rack of/4 fours, 1 trust secol psychological	et aftertet til det eintgest ander Menn Franchio-dreitsteller fandes.
EXPLANATION COMMITTE	
rest Nave	Preside Tile
Sappline Australiani Digestion	Cutr
Reptire Substitute Signature Post Contrigues Last 1	SET (F DY GOLDEN)
Dec garden palestras. The blacks The facilities	Part Functions Assured: Higgs over
□ Otter	
W/ CFG-1001 Teromopy Charge	

PPAP

What is it: Requirements for approval of production parts

Why do we need it: To make sure that we understand all of the customer requirements, and that we can meet them under actual production conditions

How is it done: Based on customer direction, there are 5 levels of PPAP to secure product approval. An application "cover sheet" is called a Product Sample Warrant (PSW) which lists 18-20 different types of evidence that may be required for submission. These can be customer and/or product/process dependent. It is typical for a customer to witness a launch and review PPAP records when on-site

PPAP Levels per AIAG 4th ed.

- 1. Warrant only for appearance items
- 2. Warrant with product samples and limited supporting data
- 3. Warrant with product samples and complete supporting data
- 4. Warrant with other requirements specified by the customer
- 5. Warrant with product samples and complete supporting data reviewing at the supplier's manufacturing location

PPAP level details are typically arranged in advance with the supplier and customer and will often depend on whether the product is a new design or another revision of a tried and true process

PPAP Components

- 1. Design records
- 2. Authorized Engineering Change documents
- 3. Customer engineering approval
- 4. Design FMEA
- 5. Process flow diagrams
- 6. Process FMEA
- 7. Control Plan
- 8. MSA Studies
- 9. Dimensional results
- 10. Material/performance test 20. Special process audit results

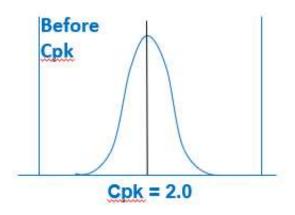
- 11. Initial process study
- 12. Qualified lab documentation
- 13. Appearance approval report
- 14. Sample production parts
- 15. Master samples
- 16. Checking aids
- 17. Customer specific requirements (CSR) records
- 18. PSW
- 19. Bulk material requirements checklist
- results

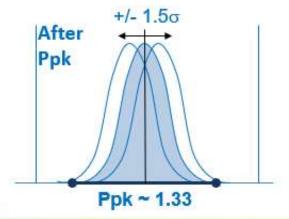
PPAP Prep...All Hands on Deck

- 1. TAKES TIME and attention to DETAIL
- 2. Requires a cross-functional team
- 3. Insure a good understanding of the Customer Specific Requirements (CSRs) in advance
- 4. Do WELL on the Appearance Approval Reports (AARs). While the easiest "up front", these are often the most expensive later on. Take the time to develop boundary samples and conduct Attribute Agreement Analysis (AAAs) to ensure skill
- 5. Attend to the full Measurement System Analysis (MSA) on variables metrics. Include calibration, resolution and GRR
- 6. Enable sufficient lead time for the DFMEA, FMEA and CP
- 7. Insure statistical control of significant characteristics
 - 8. Etc.

How to Organize

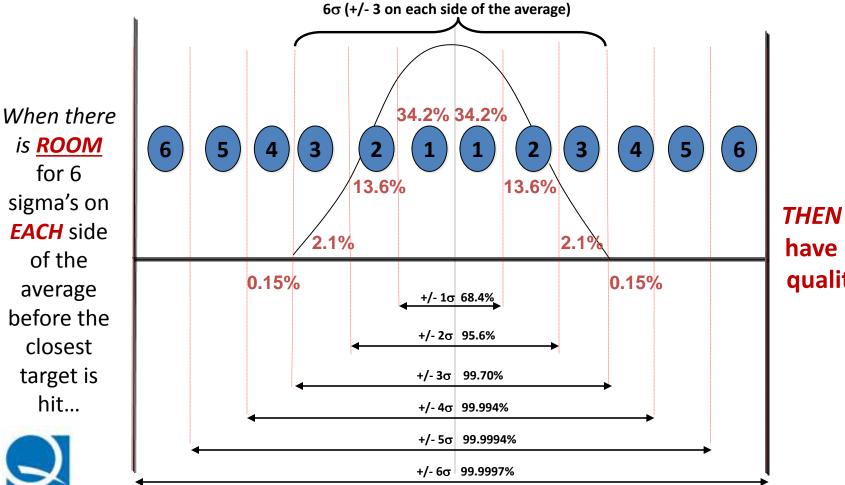
- 1. Many customers will dictate submission formats
- 2. Some companies establish binders/books
- 3. Some use formal organizing software


It is critical that:


- 1. More than 1 person has access/passwords
- 2. Proper security is enabled across those individuals
- 3. Proper revisions are sustained/maintained

Cpk

Cp/Cpk/Pp/Ppk Process Capability Primer



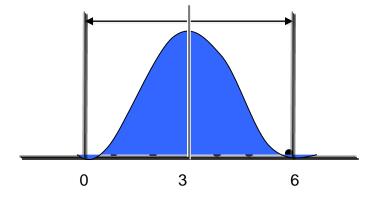
Process Capability 101

- Cp/Cpk: Also called "short term" capability which is used to reliably determine if a process is yielding good initial results by taking a representative sample size.
 - >Cp is based on the whole breadth of the process
 - ➤ Cpk is based on "half" of the process
- Pp/Ppk: Also known as "long term" process capability. The key difference is that there is much more data on hand for Pp/Ppk. AIAG notes "90 shifts, 90 days"

Dissecting the Bell

Lower Spec Limit Upper Spec Limit

THEN you have "6σ quality!"


Calculating Capability

Cp (Pp). Measures the ability of the WHOLE bell to fit within the target limits

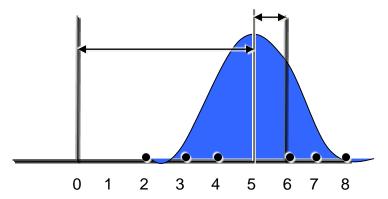
If the whole bell (6 sigmas) fit within the target limits a total of 1 time, then the Cp = 1. Ideally, 2 is preferred.

$$Cp = (USL - LSL) / (6 \times \sigma)$$

USL = 6, LSL = 0,
$$\sigma$$
 = 1

Cpk (Ppk). Measures the ability of HALF of a bell (3 sigmas) to fit within the average and the closest target limit

Cpk_U = (USL – Average) / (3 x
$$\sigma$$
)

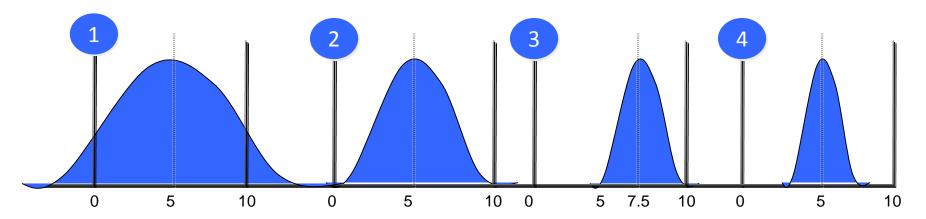

$$Cpk_L = (Average - LSL) / (3 x \sigma)$$

USL = 6, LSL = 0,
$$\sigma$$
 = 1

Cp =
$$(6-0)/(6 \times \sigma) = 1$$

$$Cpk_U = (6-5) / (3 \times \sigma) = 1/3 (0.33)$$

$$Cpk_L = (5 - 0) / (3 \times \sigma) = 1 2/3 (1.67)$$

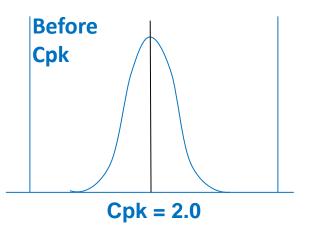


Cpk Worksheet

Determine the Cp and Cpk for each situation...Remember, if the process is NOT shaped like a bell, then sigma cannot be used (without special consideration) and the Cp/Cpk cannot be properly determined

In each case either the average or sigma may or may not change... only the specifications remain the same

#	Avg	σ	Ср	Cpk _U	Cpk _L	%Non-Conf
1	5.0	2.50				
2	5.0	1.67				
3	7.5	0.83				
4	5.0	0.83				



Shift Happens

Cpk of 2 is desired for *initial* capability

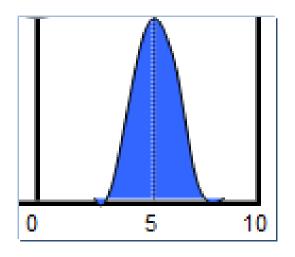
Long term capability is Ppk. This is the capability after the process experiences "life" via multiple material lot changes, set up and operator variation, seasonality, etc. Ppk is usually calculated after "90 days" (or with a significant quantity) of process data. It is the type of product results that the *long term* process will represent

It is estimated that a process will "shift" by +/- 1.5σ in response to those changes. As such, if a process started ideally with a Cpk of 2.00, then it is estimated that the resultant Ppk would be 1.33 to accommodate these types of affects

MSA (GRR & AAA) Measurement Systems Analysis

Measurement System Analysis

When we measure or make an assessment of the goodness of an item, we need to be sure that our result is correct. If it is not correct, we take two risks:


- Alpha a Risk: We may inadvertently discard or rework a good item (Aw, darn)
- Beta β Risk: We may inadvertently pass on a bad item (Boy, that was Bad)

Why Do We Need to Know?

We need to know how much error there is in our measurement processes for several reasons:

- Prevent α and β errors
- Reduce scrap/rework
- Understand what process Cp/Cpk we need our processes to have
- It is our JOB to ensure that our people are enabled to make the right pass/fail decision <u>EVERY</u> time

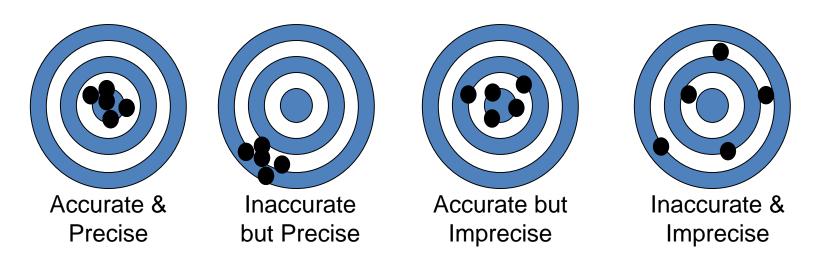
- And of course...it is an inherent part of PPAP
- NOTE: EVERY item called out for measure or inspection on a control plan is <u>REQUIRED</u> to have an MSA analysis conducted.

MSA Types: Variable & Attribute

Humans usually believe what they see and do not question a value shown on an instrument. There are <u>two typical types</u> of variables MSA used to determine the percentage of results error:

- Crossed Gage R&R (Repeatability & Reproducibility): One instrument, multiple operators and multiple part samples
- Nested GR&R. Used for gage error in destructive testing

There is **generally one type** of Attribute MSA to determine HOW right or wrong we are in our results:


 Attributes Agreement Analysis (AAA) is used for items we assess visually or by go/no go or needs to be categorized

Is this window broken? It still opens. The wooden frame is in place

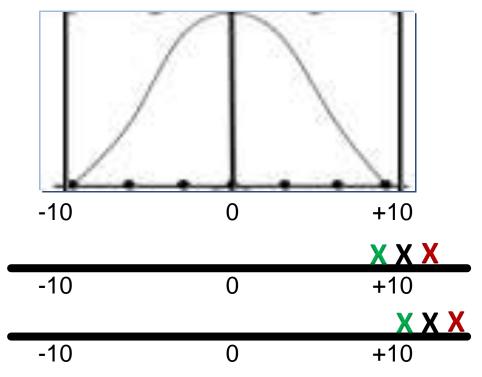
How Data Varies

Accuracy: Generally managed by **calibration** includes bias (how far off), linearity (across the breadth of the measured range) and stability (holding a measure over time)

Precision: Generally managed by Repeatability (gage) and Reproducibility (human) aka GR&R

General MSA Notes

For a variables Measurement System to work, three features are <u>equally</u> needed:


- Resolution: Ability to read the gage. (Discrimination). Resolution needs to be at least 10% of the tolerance (If not at 10% or better, additional actions are needed)
- Calibration: A check of bias, linearity and stability (performed on a regular basis)

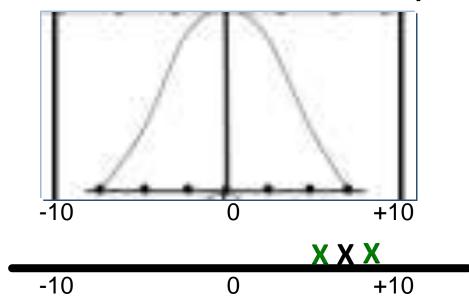
system change, qualification of personnel)

GR&R: Amount of error in human and gage performance.
 Typical GR&R <= 10% error on safety features. Included in PPAP, it insures that the gage system will work as intended BEFORE the process is launched. After that, it is conducted on an as needed basis (verification of process, gage

Resolution and Cpk

What does Resolution do for you?

With a "10% resolution gage", we would accept a unit that reads 10. But...it could be a 9 or an 11. We are at risk 1/3 of the time for a β error...**IF the Cp/Cpk is 1**


We would also reject an 11, (it could be a 10 or 12). We could have an α error 1/3 of the time...Again, **IF the Cp/Cpk is 1**

This is one of several reasons why a Cp/Cpk of 1 isn't good enough for safety features

Resolution With Cpk >1.33

Resolution with better process capability

With a more capable process, if we still have a "10% gage", the process is not likely to generate any units measuring a "10". As such, if we read an 8, it could still be a 7 or 9. However, there is now minimal risk for either an α or β error. In this case, the **Cp/Cpk** is 1.33

This is one of several reasons of why a minimum Cp/Cpk of 1.33 is required for safety features

Attribute Agreement Analysis

AAA Checks for the chances of 100% agreement on three features:

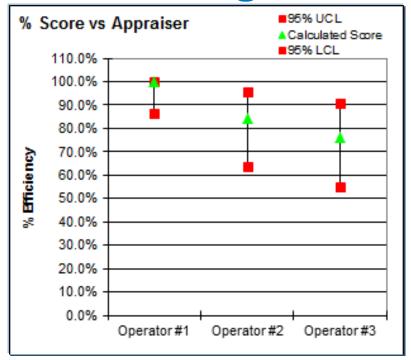
- Within "myself"; Did I repeatedly call it good or bad in a consistent manner (even if I was wrong)
- Between both me and "my peer"; Did both my peer and I repeatedly call it good or bad in a consistent manner (even if we were both wrong)
- Compared to "Standard"; Did I/we get it right

Known	Population	Opera	itor #1	Opera	tor #2	Operator #3		Y/N	Y/N
Sample #	Attribute	Try #1	Try #2	Try #1	Try #2	Try #1	Try #2	Agree	Agree
1	pass	pass	pass	pass	fail	fail	fail	N	N
2	pass	pass	pass	pass	pass	fail	fail	N	N
3	fail	fail	fail	fail	pass	pass	pass	N	N
4	fail	fail	fail	fail	fail	fail	fail	Υ	Υ
5	fail	fail	fail	fail	fail	fail	fail	Υ	Υ
6	pass	pass	pass	pass	pass	pass	pass	Υ	Υ

AAA Quick Notes

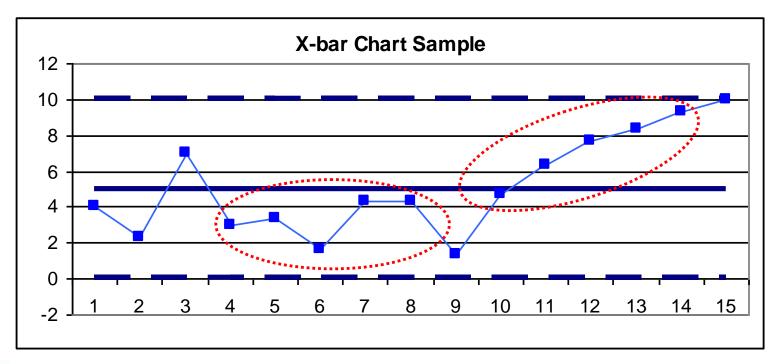
An AAA needs many Pass/Fail "Samples"; Preferably 50 or more (pass/fail/borderline). **NOTE**: One unit might have several samples on it An AAA is a check for accuracy in human performance. The target for "Statistical Agreement" is >= 85%. Another form of Agreement is called Kappa (K). AIAG calls out for $K \ge 75\%$. AAA is done as a part of PPAP to ensure that the review process will work as intended; before the process is launched. It should be treated as a "maintenance" action with regular review to keep human assessors "calibrated". Usually quarterly

AAA: What It Looks Like


AAA Gives a series of graphs to show how the operators perform in general. While 100% agreement is not feasible, (like 0% GRR Error), industry norm is 85% for Statistical Agreement

	Screen % Effective Score vs Attribute ⁴			
Total Inspected		25		
# in Agreement		17		
95% UCL		85.1%		
Calculated Score		68.0%		
95% LCL		46.5%		
	# in Agreement 95% UCL Calculated Score	Total Inspected # in Agreement 95% UCL Calculated Score	Total Inspected 25	

Not an effective Statistical Agreement at < 85% This team will be in statistical agreement about 68% of the time.



However, 95% of the time, they will likely range from 47% in agreement to 85%

5

SPC Statistical Process Control

What's Normal?

There are 6 main causes of Normal Variation for almost any type of process...

This is <u>NORMAL</u>. Hence the "normal" or Gaussian distribution.

Ma npower
Ma chine
Ma terial

Me thod Me asurement

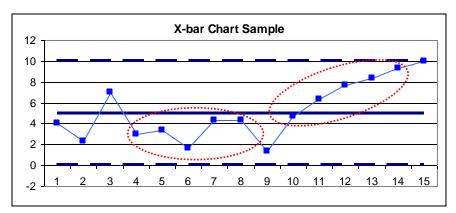
E nvironment

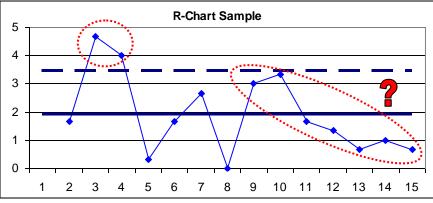
SPC; High Level Guidelines

- 1. SPC applies to both variables and attributes. It is a graphbased statistical method to analyze and control a process
- 2. First step is to **insure MSA effectiveness**; whether for variables (GRR) or attributes (AAA)
- 3. For variables, must **insure that the process is capable** FIRST, prior to establishing a control chart (Cpk >= 1.33)
- 4. Determine any key patterns (common sense control) that are meaningful to your process and train to those conditions. These typically include: Shifts, Trends, Points outside of the limits
- 5. After that, it's a go/no go chart. The graphs help you to know when the processes change (whether desired or not)

After GRR & Cpk; Now We Can Chart

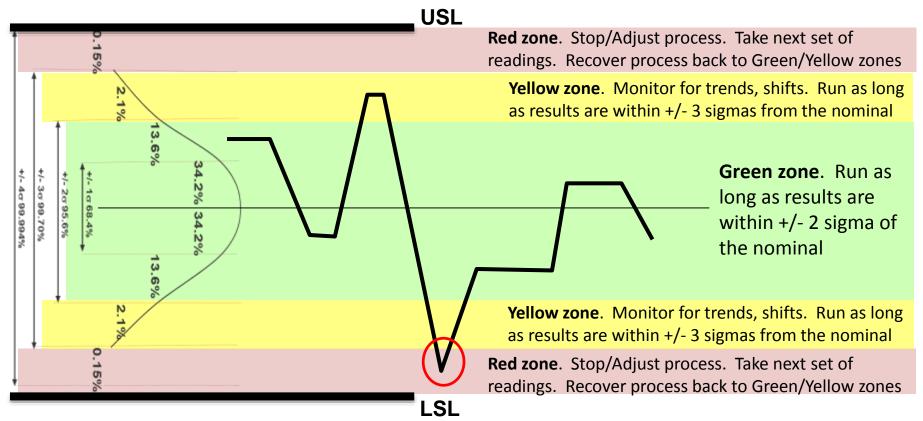
Moving X and Range chart plots data across time along with its corresponding ranges. Patterns are reviewed for prevention purposes.


Most Common Signals:


- 5 or more points above or below the average line is considered a shift (bell has moved)
- 5 or more points continuously increasing or decreasing is considered a trend
- Any point outside of the control limits.

These are considered non-normal patterns and the process spread has likely increased

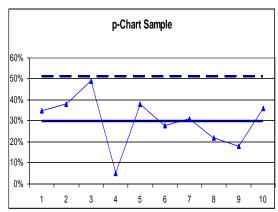
NOTE: Different references call out varying control criteria

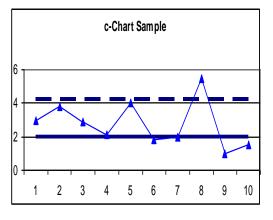


X-bar and R charts are PREVENTIVE and PREDICTIVE forms of process management. They give an advanced warning enabling proactive actions

Pre-Control: No "Limits"

SPC is powerful and effective. Pre-Control is a step before that. It "forces" a 1.33 Cpk by requiring the process to "**pre-act**" when data signals are in-spec but outside of the +/- 3 sigma range. While no control limits need to be calculated, careful communication of **WHY** a person needs to react and adjust the process for an in-spec part

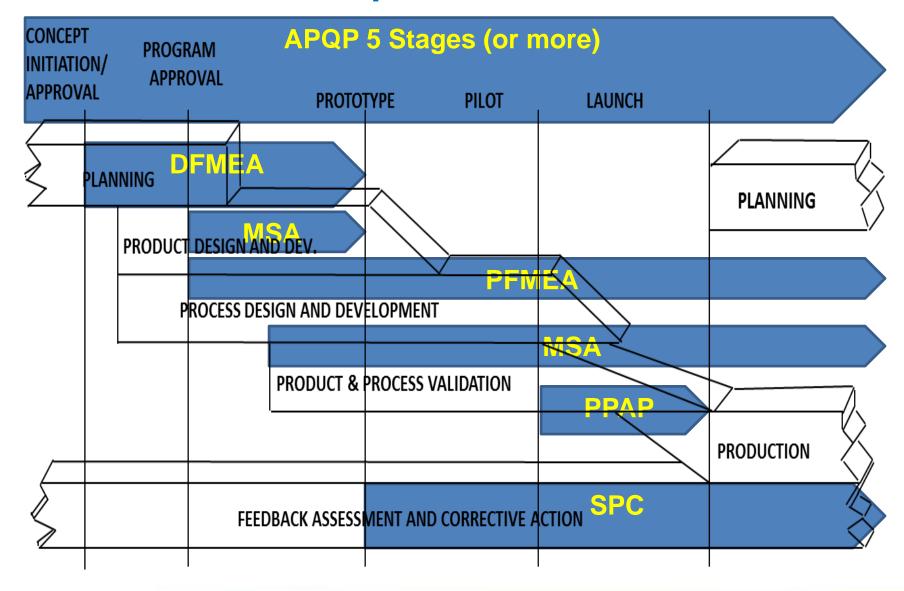

Attribute Charts; With a Good AAA


p-chart. A trend-based percentage chart. Must be paired with a Pareto or checksheet to execute fixes. A p-chart typically follows a Weibull distribution because either 0 or 100 is optimal and a "half bell" is developed with bias towards one end or the other.

c-chart. This "counts" defects per unit. Ex. A application may have 3 typos, 2 smudges and 2 areas not filled out for 8 defects on 1 item. The next one may be perfect. The c would equal 4 defects per unit. This is a highly effective method that captures detailed data. It is powerful when paired with a Pareto. Again, checksheets are often used. There is usually a high cost to capture this data. c-charts are usually "turned on/off" to capture a timeframe of data and then rechecked later to verify the effectiveness of the fixes

Trends:

- 5 or more points above or below the average line is considered a shift
- 5 or more points continuously increasing or decreasing is considered a trend
- Any point outside of the control limits. Spread has likely increased



p and c Charts describe what happens AFTER the process has occurred. (identifying either scrap/rework). Losses are incurred. The intent of these charts is to see if the corrective actions are working

Common Types of SPC Charts

Chart Type	Primary Usage	What is Charted	Typical Sample Size
X-Bar & R	Routine monitoring of high volume manufacturing processes	Plots the average of the data set and its range	~3 to 6
Individual & Moving Range (IMR)	Used when only sample is possible. Common for transactional (monthly) processes	Plots the value and the moving range of the current and preceding values	One
p-Chart	Routine monitoring of high volume processes where scrap/rework trends are critical	Plots the percent non-conforming	Variable
c-Chart	Used for deeply analyzing non-conformities in a product	Plots the average number of non-conformities in a single unit	Variable

Where The Alphabets Fit...

The FIVE Core Tools

- Absorbed Profession Statement (Control of Statement Control of Statement
- 1. APQP: Advance Product Quality Planning: Guidelines for a product quality plan to develop a product or service that satisfies the customer
- 2. FMEA: Failure Modes and Effect Analysis: Methodology used to ensure potential problems have been considered and addressed throughout the product and process development process (Ex. APQP). Traditionally includes the Control Plan (CP)
- 3. PPAP: Production Part Approval Process: Ensures product consistently meets customer engineering specification requirements during production run at the quoted production rate
- 4. MSA: Measurement Systems Analysis: Guidelines for assessing the quality of a measurement system where readings are replicated
- 5. SPC: Statistical Process Control: Basic graphing statistical tools that enable process control and capability for continual improvement

Questions?

Jd Marhevko

Phone: (419) 704-5603

Email: JdMarhevko@AccurideCorp.com